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The parabolized stability equations (PSE) are used to investigate issues of non-
linear flow development and mixing in compressible reacting shear layers, which are
modelled with an infinitely fast-chemistry assumption. Particular emphasis is placed
on investigating the change in flow structure that occurs when compressibility and
heat release are added to the flow. These conditions allow the ‘outer’ instability
modes – one associated with each of the fast and slow streams – to dominate over
the ‘central’, Kelvin–Helmholtz mode that exists unaccompanied in incompressible
non-reacting mixing layers. Analysis of scalar probability density functions in flows
with dominant outer modes demonstrates the ineffective, one-sided nature of mixing
that accompanies these flow structures. Colayer conditions, where two modes have
equal growth rate and the mixing layer is formed by two sets of vortices, offer some
opportunity for mixing enhancement. Their extent, however, is found to be limited in
the mixing layer’s parameter space. Extensive validation of the PSE technique also
provides a unique perspective on central-mode vortex pairing, further supporting the
view that pairing is primarily governed by instability growth rates; mutual induction
appears to be a secondary process. This perspective sheds light on how linear stability
theory is able to provide such an accurate prediction of experimentally observed, fully
nonlinear flow phenomenon.

1. Introduction
Direct and efficient mixing of fuel and oxidizer streams is of primary interest in all

combustion applications. This is particularly true in flows that combine significant heat
release with compressible shear, where these two influences can cause a substantial
change in the large-scale flow structure and hence in the mixing characteristics. An
intuitive understanding of these flow-structure changes that occur in compressible
reacting mixing layers can be developed by examining the density-weighted vorticity
profile, ρ du/dy. The shape of this profile is shown in figure 1 for (a) incompressible
non-reacting and (b) compressible reacting conditions. The former conditions result
in uniform cross-stream density and a single, centrally located peak in the ρ du/dy
profile. This results in the familiar type of two-dimensional flow structure that was first
experimentally identified by Brown & Roshko (1974) and corresponds to the Kelvin–
Helmholtz instability. This coherent structure, which dominates incompressible non-
reacting mixing layers, will be used as a convenient reference point in this work,
referred to as the ‘central’ mode based on its general location in the layer.

This mixing configuration changes dramatically when the influences of compress-
ibility and chemical reaction are considered. Both of these factors will cause an
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Figure 1. Construction of the density-weighted vorticity profile and the resulting flow structure in
(a) incompressible non-reacting and (b) compressible reacting conditions.

increase in temperature along the centreline: compressibility through the coupling of
kinetic and thermal energy, and chemical reaction through the enthalpy of combus-
tion. The result, as shown in figure 1(b), is a drop in density along the centreline
and a transition in the shape of the ρ du/dy profile from a single- to double-peak
appearance. Correspondingly, two new instability modes – referred to individually as
‘fast’ and ‘slow’ and jointly as ‘outer’ modes – can become dominant.

An appreciation of the importance of large-scale, organized flow structures follows
from Brown & Roshko’s (1974) discovery of the dominant role these vortical structures
play in mixing processes. Therefore, developing an understanding of the flow-structure
changes induced by compressibility and heat release is critically important to applica-
tions of supersonic combustion, scramjets in particular. Outer-mode flow structures
also provide the physics behind flame flicker in buoyant diffusion flames (Chen et
al. 1988), and can possibly provide an explanation for measurements of structure
convection speeds that indicate a migration in velocity toward the free-stream limits
in supersonic flows (Papamoschou & Bunyajitradulya 1997; Smith & Dutton 1999).

1.1. Background

The central mode provides a convenient and well-studied reference point for our
discussion. A comprehensive overview of early experimental and computational work
done in the low-compressibility regime is provided by Ho & Huerre (1984). Studies
particularly relevant to our work include Winant & Browand’s (1974) observation
that successive pairing between neighbouring vortices forms the dominant mechanism
for mixing-layer growth. Clemens & Mungal (1995) demonstrated that this remained
a critical mechanism at high Reynolds number. Central-mode mixing properties were
investigated by Konrad (1976), Koochesfahani & Dimotakis (1986) and Masutani &
Bowman (1986), all of whom identified a preferred mixture fraction value, ξ, that
is governed by the entrainment ratio and demonstrates a bias toward the fast-free-
stream fluid. These studies also found that pure free-stream fluid from both free
streams could be transported throughout the layer by large-scale structures without
mixing.

The stabilizing effect of compressibility on the central-mode growth rate was
first observed in the linear stability studies of Dunn & Lin (1955), Lessen, Fox
& Zien (1965) and Gropengiesser (1970). Experimental evidence for the growth
rate suppression built on the results of Brown & Roshko (1974), who were the
first to separate density ratio and compressibility effects. For mixing layer flows,
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more definitive evidence came from the experiments of Chinzei et al. (1986) and
Papamoschou & Roshko (1988). An explanation for this reduction was provided
by Vreman, Sandham & Luo (1996) with the use of DNS databases at various
compressibilities and a growth-rate model based on the integrated production of
turbulent kinetic energy. They demonstrated that suppression of the pressure–strain-
redistribution term, caused by the reduction of pressure fluctuations, was responsible
for the growth rate attenuation with compressibility. The early stability work of Dunn
& Lin (1955), Lessen et al. (1965) and Gropengiesser (1970) also identified three-
dimensionality as a second manifestation of compressibility. Subsequent numerical
studies by Sandham & Reynolds (1991) found that the transition from two- to three-
dimensionality starts at a convective Mach number, Mc (see definition below), of 0.6,
which was experimentally verified by Clemens & Mungal (1995).

The third important contribution from compressible stability work was the iden-
tification of two additional instability modes, one associated with each of the fast
and slow streams (Lessen, Fox & Zien 1966; Gropengiesser 1970). These ‘supersonic’
stability modes, fully characterized by Jackson & Grosch (1989), were predicted to
exist at compressibility regimes unattainable in most experimental facilities. Further,
their growth rates were found to be lower than the three-dimensional central mode,
and hence they were originally viewed to be of more theoretical than practical interest.
However, this perspective changes considerably when the influence of combustion is
considered; now, as explained earlier, both compressibility and heat release can work
together to cause outer-mode dominance (Jackson & Grosch 1990; Planché 1992;
Planché & Reynolds 1992; Shin & Ferziger 1993). Indeed, Jackson & Grosch (1990)
point out that, taken separately, the influences of compressibility and heat release on
creating outer modes are quite similar. A full characterization of the different modal
regimes – central, fast and slow – that exist in the mixing layer’s parameter space is
provided in Day, Mansour & Reynolds (1998). The outer-mode creation mechanism,
based on the ρ du/dy profile, applies equally to all shear layers; Papas, Monkewitz &
Tomboulides (1999) investigated the stability characteristics of similar ‘heat release’
modes in a diffusion flame using finite-rate chemistry.

Experimental work in compressible reacting conditions is limited due to its con-
siderable complexity. Significant work on compressible reacting mixing layers at
Mc > 0.4 has been reported by Miller, Bowman & Mungal (1998), although their
combination of heat release and compressibility was not sufficient to generate domi-
nant outer modes (Planché 1992, see also Planché & Reynolds 1992). However, these
experiments did indicate, in agreement with Hall (1991), that compressibility removes
the fast-side bias in the entrainment rate of the central mode. Also, Miller et al.
(1998) noted a significant increase in OH signal between their low- (Mc = 0.32, 0.35)
and high-compressibility (Mc = 0.70) cases, suggesting that the development of
three-dimensional flow structure in the latter case enhanced the combustion process.
Experiments to access outer-mode regimes have been planned by Rossmann, Hanson
& Mungal (1999).

The motivation behind the current study becomes clear when mixing mechanisms
of the central and outer modes are compared. The central mode efficiently entrains
fuel from one side of the layer and oxidizer from the other (see figure 2a). The single-
step nature of this mixing process is in contrast to the outer-mode mechanism shown
in figure 2(b). Here, each instability mode mixes one reactant into the combustion
zone, resulting in a two-step process. Preliminary DNS calculations of Planché (1992)
indicated a significantly lower global reaction rate with this flow configuration when
compared to the central-mode case of figure 2(a). Further, these calculations and
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Figure 2. Schematic of the mixing mechanism in (a) central- and (b) outer-mode-dominated flows.

the outer-mode schematic drawn here refer to the ‘colayer’ case, where both outer
vortical modes are present; combustion performance further deteriorates when flow
conditions change and only a single outer mode remains (Day et al. 1998).

The primary objective of this paper is to provide a comparison of mixing perfor-
mance and flow physics between outer-mode-dominated flows – in both single mode
and colayer configurations – and the more commonly studied central-mode mixing
layer. The conflicting requirements to analyse a number of three-dimensional compu-
tational solutions while maintaining a reasonable computational cost motivated our
use of the parabolized stability equations (PSE). For the regime of convectively un-
stable flows, this technique provides a tool for modelling nonlinear and non-parallel
effects that are critical to the accurate simulation of large-scale structure. Under-
standably, the mode-limited nature of this analysis technique restricts our analysis to
large-scale structures and their associated mixing processes.

With a focus on brevity, the main principles of the PSE technique are outlined in
§ 2 – its details appear in Day (1999; see also Day, Mansour & Reynolds 1999). As
the first application of this technique to mixing layer flows, validation against DNS
results is provided in § 3 for both sub- and supersonic flow regimes. Interestingly, this
validation also provides a unique perspective on central-mode vortex pairing, offering
a compelling explanation for how linear stability analysis is able to effectively predict
fully nonlinear flow phenomenon. Section 4 addresses a comparison of central- and
outer-mode mixing performance, and also evaluates strategies for mixing enhancement
in a colayer flow structure.

2. Numerical methodology
2.1. Flow parameters

A schematic of the flow configuration is shown in figure 3. The high-speed stream
on the upper side of the mixing layer (denoted with the subscript 1) carries a mass
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Figure 3. Schematic of the flow configuration with specified input conditions.

fraction of oxidizer, Yo,∞, while the slow-speed stream (subscript 2) carries a mass
fraction of fuel, Yf,−∞. The density, ρ, can vary between the two streams.

The current work follows convention in using the convective Mach number (Bog-
danoff 1983; Papamoschou & Roshko 1988) as a generalized measure of compress-
ibility. This parameter has the definition

Mc =
U∗1 −U∗2
a∗1 + a∗2

(2.1)

for flows of uniform specific heats, where U1, a1 and U2, a2 are the velocity and sound
speed of the fast and slow free streams, and (∗) denotes a dimensional quantity.

Chemical reactions in this investigation are simplified using the approximation of
a single, infinitely fast step of the form

F + nO → (n+ 1)P , (2.2)

where n represents the mass of oxidizer that stoichiometrically reacts with one
unit-mass of fuel to produce n + 1 unit masses of product. The amount of heat
release imparted to the layer is measured through a non-dimensionalized enthalpy of
combustion (heat release parameter)

Θ =
−∆H∗c Yf,−∞
c∗p1
T̄ ∗1 (1 + φ)

(2.3a)

=
− [(n+ 1)∆h∗,of,p − n∆h∗,of,o − ∆h∗,of,f

]
Yf,−∞

c∗p1
T̄ ∗1 (1 + φ)

(2.3b)

= Tf − 1, (2.3c)

where ∆H∗c is the enthalpy of combustion per unit mass of fuel, Yf,−∞ is the fuel mass
fraction on the slow side, c∗p1

is the specific heat, ∆h∗,of,k is the enthalpy of formation
for species k, and T ∗1 the temperature on the fast side of the mixing layer. With this
definition, the heat release parameter has the concise relation to the adiabatic flame
temperature, Tf , given in equation (2.3c) (Williams 1985). The equivalence ratio is
also included in the Θ-equation, and its definition is

φ =
(Yf,−∞/Yo,∞)real

(Yf,−∞/Yo,∞)stoich

=
nYf,−∞
Yo,∞

, (2.4)
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where n is specified in equation (2.2). The remaining parameters of the investigation
are the free-stream density and velocity ratios, s = ρ ∗2 /ρ ∗1 and r = U ∗2 /U∗1 .

2.2. Mean-flow solution

Stability analysis – both parabolized and linear – requires the input of mean velocity
and temperature profiles. Their solution begins with the two-dimensional compressible
boundary layer equations for laminar reacting flow. Starting with these equations (see,
for example, Kuo 1986), all quantities are non-dimensionalized by their respective val-
ues on the high-speed side of the layer with the vorticity thickness δω = ∆U/|dū/dy|max

serving as the length scale. The equations are further simplified by assuming unity
Prandtl and Lewis numbers and negligible streamwise pressure gradient. These sim-
plifications yield the following non-dimensional system for continuity, streamwise
momentum, energy, species mass fraction, and the ideal gas equation of state:

∂ρu

∂x
+
∂ρv

∂y
= 0, (2.5a)

ρu
∂u

∂x
+ ρv

∂u

∂y
=

1

Reo

∂

∂y

(
µ
∂u

∂y

)
, (2.5b)

ρu
∂ht

∂x
+ ρv

∂ht

∂y
=

1

Reo

∂

∂y

(
µ
∂ht

∂y

)
, (2.5c)

ρu
∂Yk

∂x
+ ρv

∂Yk

∂y
=

1

Reo

∂

∂y

(
µ
∂Yk

∂y

)
+ ẇk, (2.5d)

ρRT = 1, (2.5e)

where x and y are the streamwise and normal coordinate directions; u and v are the
velocity components in those directions; ρ, p and T are the density, pressure, and
temperature, respectively; µ is the viscosity; Yk is the mass fraction of species k, where
k is one of oxidizer, fuel or product; ẇk is the time rate of production of species k; R
is the gas constant; and energy is cast in terms of the total enthalpy, h∗t , to capture
both internal and kinetic forms of energy.

Further simplification of these equations is achieved by introducing the stream
function definition for compressible flow, ρu = ∂ψ/∂y and ρv = −∂ψ/∂x, which
eliminates the continuity equation (2.5a), and through the single-step, infinitely fast
chemistry assumption of equation (2.2). The resulting equations for conservation of
momentum, species (cast using the passive scalar Z = Yf − Yo/n), and energy then
appear as

∂ψ

∂y

∂u

∂x
− ∂ψ

∂x

∂u

∂y
=

1

Reo

∂

∂y

(
µ
∂u

∂y

)
, (2.6a)

∂ψ

∂y

∂Z

∂x
− ∂ψ

∂x

∂Z

∂y
=

1

Reo

∂

∂y

(
µ
∂Z

∂y

)
, (2.6b)

∂ψ

∂y

∂ht

∂x
− ∂ψ

∂x

∂ht

∂y
=

1

Reo

∂

∂y

(
µ
∂ht

∂y

)
. (2.6c)

A similarity solution can be found by first introducing Howarth’s coordinate
transformations (Schlichting 1979)

ς = x and η =

√
Reo

2x

∫ y

0

ρdy. (2.7)
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Then, by assuming that the mixing layer is fully developed and that quantities are
only dependent on η, we have

ψ(x, y) =

√
2x

Reo
F(η), Z(x, y) = Z(η), ht(x, y) = ht(η). (2.8)

The additional, but not required, assumption that the non-dimensional viscosity and
temperature are linearly related yields the further simplified form

F ′′′ + FF ′′ = 0, Z ′′ + FZ ′ = 0, h′′t + Fh′t = 0, (2.9)

where ′ denotes differentiation with respect to η.
This system of equations is solved using the shooting method of Sandham (1989;

see also Sandham & Reynolds 1989) with refinements discussed in Day (1999), subject
to the boundary conditions

F ′(∞) = U1, F(0) = 0, F ′(−∞) = U2, (2.10a)

Z(∞) = −Y0,∞/n, Z(−∞) = Yf,−∞, (2.10b)

ht(∞) =
γRT1

(γ − 1)M1

+ Yo,∞∆hof,o +U2
1/2, (2.10c)

ht(−∞) =
γRT2

(γ − 1)M1

+ Yf,−∞∆hof,f +U2
2/2, (2.10d)

where the latter two equations appear with the assumption of constant specific heats,
γ = γ1 = γ2 = 1.4, and uniform molecular mass,M, in the mixing layer. The uniform-
molecular-mass assumption yields a uniform gas constant and, more importantly,
a reciprocal relationship between ρ and T through the ideal gas equation and the
thin-shear-layer assumption of uniform pressure.

With the solutions for F(η), ht(η) and Z(η) at hand, the mean u and v profiles are
available from equation (2.8), while the temperature profiles are evaluated from

T (x, y) =
(
ht(η)− Yf(η)∆hof ,f − Yo(η)∆hof,o − u2(η)/2

)
/cp. (2.11)

The heats of formation are determined from equation (2.3b) for a prescribed value of
Θ with the assumption that the chemical reference species includes both the product
and oxidizer, and hence ∆hof,f is the only non-zero contribution to ∆Hc.

2.3. Parabolized stability equations

The parabolized stability equations (PSE) were conceived (Herbert & Bertolotti 1987;
Bertolotti, Herbert & Spalart 1992; Herbert 1994) as a tool that, for the limited
class of convectively unstable shear flows, would provide the quantitative accuracy
of large-eddy or direct simulation while maintaining low computational cost and
significant flexibility. The advantages of this technique stem from the fact that it
is nonlinear and non-parallel, implying better physical representation and greater
quantitative accuracy than linear, parallel stability techniques.

Derivation of the PSE begins with the decomposition of flow variables into mean
and fluctuating parts:

ρ = ρ̄+ ρ̃, T = T̄ + T̃ , p = 1 + p̃, Z = Z̄ + Z̃ ,
u = ū+ ũ, v = v̄ + ṽ, w = 0 + w̃,

}
(2.12)

where the non-dimensional pressure is assumed uniform in the solution domain and
the mean flow in the spanwise direction (the w-component) is neglected. Again, we



382 M. J. Day, N. N. Mansour and W. C. Reynolds

make use of the passive scalar, Z = Yf−Yo/n, and the infinitely fast, one-step reaction
model of equation (2.2).

Our original development of the PSE employed the inviscid equations for momen-
tum, energy and species, in addition to the continuity and state equations that are
required to close the system. However, for reasons that will be explained, the numeri-
cal stability of the PSE approach is enhanced by the inclusion of viscous terms in the
cross-steam direction; the net result amounts to the use of the thin-shear-layer equa-
tions for our analysis. With the assumption of constant specific heats and molecular
mass, these governing equations can be expressed in non-dimensional form as

∂ρ

∂t
+
∂ρui

∂xi
= 0, (2.13a)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − 1

γ1M
2
1

∂p

∂xi
+

1

Reo

∂τ̆ij

∂xj
, (2.13b)

ρ

(
∂Z

∂t
+ ui

∂Z

∂xi

)
=

µ

ReoSc

∂

∂xi

(
µ
∂Z

∂xi

)
, (2.13c)

ρ

(
∂T

∂t
+ ui

∂T

∂xi

)
=

γ

P r Reo

∂

∂xi

(
µ
∂T

∂xi

)
− p(γ − 1)

∂ui

∂xi
, (2.13d)

p = ρT , (2.13e)

where Pr and Sc are the Prandtl and Schmidt numbers, and

∂τ̆ij

∂xj
=



∂

∂y

(
µ
∂u

∂y

)
if i = 1, j = 2,

4

3

∂

∂y

(
µ
∂v

∂y

)
if i = 2, j = 2,

∂

∂y

(
µ
∂w

∂y

)
if i = 3, j = 2,

0 otherwise.

(2.14)

Substituting the decompositions of equation (2.12) into the governing system of
equation (2.13) and subtracting mean-flow terms yields

Γ
∂φ̃

∂t
+ A

∂φ̃

∂x
+ B

∂φ̃

∂y
+ C

∂2φ̃

∂y2
+ D

∂φ̃

∂z
+ E φ̃ = F , (2.15)

where φ̃ = [ρ̃, ũ, ṽ, w̃, Z̃ , T̃ , p̃]T is the perturbation vector, and the right-hand-side
term F represents the nonlinear terms.

Disturbances are assumed to be periodic in both time and spanwise dimensions,
which permits a Fourier representation

φ̃(x, y, z, t) =

∞∑
m=−∞

∞∑
n=−∞

Φ̂mn(x, y) ei(βnz−ωmt), (2.16)

where, for base frequency ω1 and spanwise wavenumber β1, ωm = mω1 and βn = nβ1.
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In practice, the modes are truncated to a finite number of order 10:

φ̃(x, y, z, t) =

M∑
m=−M

N∑
n=−N

Φ̂mn(x, y) ei(βnz−ωmt). (2.17)

(In addition, we note that the summations also must include additional modes for
dealiasing according to the three-halves rule.) The PSE approach borrows from the
more limited multiscale method by decomposing Φ̂mn into a slowly varying shape
function and a rapidly varying wave-like part to obtain

Φ̂mn(x, y) = φ̂mn(x, y)Amn(x), (2.18)

where

Amn(x) = εomn exp

(
i

∫ x

0

αmn(x
′) dx′

)
(2.19)

is the amplification factor, εomn is the initial disturbance magnitude, φ̂mn is the vector of
shape functions, and αmn is the streamwise wavenumber. (We note that no summation
is to be implied by repeated indices in this subsection.)

Substituting equations (2.17) to (2.19) into (2.15) results in the form

Lmn(φ̂mn) =
F̂ mn

Amn

, (2.20)

where

Lmn = −iωmnΓ+ A(iαmn +
∂

∂x
) + B

∂

∂y
+ C

∂2

∂y2
+ iβmnD + E .

For efficiency, the Fourier forcing component, F̂ mn, is evaluated through a fast Fourier
transform of the total forcing vector, F , which is evaluated in real space. This
transform appears as,

F (x, y, z, t) =

M∑
m=−M

N∑
n=−N

F̂ mn(x, y) ei(nβ1z−mω1t). (2.21)

The PSE formulation employs three techniques for obtaining greater computational
efficiency than through direct numerical simulation. First, the streamwise-fluctuating
shape of the disturbance is assumed, thereby avoiding the use of a fine-resolution
grid in the streamwise direction. Second, the Fourier series of (2.17) is severely
truncated to limit analysis to the large scales where these assumptions are valid. And,
most importantly, the slowly varying assumption applied to the shape function is

expressed as ∂2φ̂mn/∂x
2 = 0, rendering the governing equations ‘nearly’ parabolic (to

be explained below) regardless of whether the thin-shear-layer or full equations are

used. This permits a streamwise marching solution for φ̂mn. Our analysis also makes
a further simplification by applying a symmetry condition in the spanwise direction
about z = 0. Together, these aspects of the PSE combine to result in a technique that
is extremely efficient and accurate in simulating the flow development to a moderately
nonlinear stage.

An analysis of equation (2.18) reveals that the streamwise change of Φ̂(x, y) can be

absorbed into either the shape function, φ̂(x, y), or the streamwise wavenumber, α(x),
where the latter defines the value of the amplitude function, A(x). This ambiguity
must be resolved through the introduction of an additional equation; one commonly

employed solution is to impose a constraint on the streamwise growth of φ̂(x, y). The
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particular choice of constraint appears to only have a slight quantitative effect on PSE
results. The method proposed by Herbert (1994) has the benefit of a mathematical
basis and an integral approach, and it is employed in this investigation. Briefly, it
evolves by considering the streamwise logarithmic derivative of equation (2.17)

−i(ln φ̃)x = α− i
φ̂x

φ̂
. (2.22)

It is desirable to equate this result with what would be obtained in the case of a linear
stability formulation, which lacks the second term, in order to equate growth-rate
definitions. This term can be eliminated in an integral sense by multiplying both sides

of equation (2.22) by |φ̂|2, integrating over the f domain in y, and dividing by the

integral of |φ̂|2. The procedure yields

−i

∫
f

|φ̂|2(ln φ̂)x dy∫
f

|φ̂|2 dy

= α− i

∫
f

φ̂†φ̂x dy∫
f

|φ̂|2 dy

, (2.23)

where † denotes a complex conjugate. The second term can be eliminated by choosing∫
f

φ̂†φ̂x dy = 0 (2.24)

as the integral norm to close the PSE system. In the calculations to follow, only the

velocity-component contributions to the vector φ̂ are included, yielding the norm∫
f

v̂†v̂x dy = 0, (2.25)

where v̂ = (û, v̂, ŵ).
To this point in the analysis, the governing equation (2.20) has been described as

parabolic without further justification. However, the analyses of Haj-Hariri (1994)
and, in greater detail, of Li & Malik (1996) and Andersson, Henningson & Hanifi
(1998) have identified residual ellipticity in the parabolized equations that make them
ill-posed for a streamwise marching solution. The majority of this ellipticity arises
from the ∂p̂/∂x term, which physically represents the upstream acoustic wave, and
can manifest itself by destabilizing the marching procedure in subsonic flows. The
approach taken herein is to introduce a damping function, Ω, to eliminate the primary
source of upstream influence found in the streamwise pressure gradient:

∂p′

∂x
=

M∑
m=−M

N∑
n=−N

(
iαmnp̂mn + Ω

∂p̂mn

∂x

)
Amn(x) ei(βnz−ωmt). (2.26)

We note that even the coarse assumption of setting Ω = 0 eliminates, at worst, a
secondary part of the streamwise derivative because p̂mn is slowly varying in the
streamwise direction. This assumption is adopted in the current work and will be
validated in § 3.

2.4. PSE solution procedure

Initial conditions for the PSE are obtained from linear stability solutions. Typically,
these solutions are only easily obtained for the first few frequency modes (e.g. m 6 2)
that are linearly unstable. However, it is often necessary to introduce linearly stable,
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high-frequency or high-β-wavenumber modes during the simulation, when the Fourier
spectrum broadens. Initial conditions for these modes are obtained from an explicit
solution for Φ̂mn according to the PSE governing equation

L∗mn(Φ̂mn) = F mn, (2.27)

where the streamwise derivative terms in Lmn are removed to yield L∗mn. In order
to generate a reasonable solution, the real part of αmn is initially phase locked such
that R{αmn} = mR{α10}, while the imaginary part of αmn is set slightly negative (10−4)
to avoid numerical singularities. The frequency and spanwise wavenumber are fixed
at their appropriate harmonic levels, ωmn = mω10 and βmn = nβ01. The result of this
procedure is normalized according to the same method applied to the linear stability
input functions: the maximum magnitude is set to unity and the phase is set such
that v̂mn is purely real along the centreline.

Previous PSE studies have demonstrated that homogeneous Dirichlet boundary
conditions in the free stream are adequate for accurate simulations (Herbert 1994).
This approach, reasoned from the characteristic exponential decay of disturbances in
the free stream, allows the approximation

φ̂ = 0 as y → −∞ and y →∞ (2.28)

to be applied without adverse effect, provided the boundary equation is applied
far – at least 10δω – from the centreline. However, applying the PSE to supersonic-
shear-layer calculations often requires the solution of cases where a disturbance
travels supersonically relative to either, or both, free streams. The oscillatory free-
stream decay of these supersonic modes necessitates the use of an implicit boundary
condition

φ̂′

φ̂
= ∓q for y → ±∞, (2.29)

where q is the coefficient of exponential decay obtained from the linear stability
equations (Day 1999). The choice of boundary conditions is dependent on the modal
phase speed, cr = Re(ω/α):

y → −∞ :


φ̂ = 0 for cr < c−
φ̂′

φ̂
= q for cr > c−,

(2.30)

y →∞ :


φ̂ = 0 for cr > c+

φ̂′

φ̂
= −q for cr < c+,

(2.31)

where c+ and c− are the speed of sound of the fast and slow stream, respectively
(Jackson & Grosch 1989).

Boundary conditions for the mean flow correction mode, φ̂00, are treated slightly
differently to allow for a non-zero v̂00 at the boundary, which is necessary to satisfy
mass-balance constraints as the mixing layer mean profile, ū + û00A00, grows down-
stream. As with the other modes, a mixed boundary condition is used: for supersonic
flows the wave-based condition of equation (2.29) is employed, while subsonic flows
are solved with the more commonly used combination of Neumann conditions for
v̂00 and Dirichlet conditions for the remaining variables.

The solution procedure of equation (2.20) requires discretization in both the stream-
wise and cross-stream directions. A fourth-order central difference approximation is
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used in the latter, in combination with grid stretching to provide DNS-like resolu-
tion in y. In the streamwise direction, however, we note that the PSE method is
constructed around the assumption of slow shape-function variation, and hence a
first-order backward difference is sufficient. Recasting equation (2.20) as

Lmnφ̂mn = Lmnφ̂mn +Mmn

∂φ̂mn
∂x

=
F̂ mn

Amn

, (2.32)

the backward difference takes the form

[∆xLi+1
mn +M i+1

mn ]φ̂
i+1

mn = M i+1
mn φ̂

i

mn +
F̂
i+1

mn

Ai+1
mn

∆x. (2.33)

The linear PSE solution is obtained by setting F̂ i+1
mn to zero.

A cost-function approach based on the specified norm of equation (2.25) can be
developed to yield the following iteration strategy for the wavenumber at each new
streamwise step, αi+1:

αn+1
i+1 = αni+1 − i

∆xi

∫
f

(v̂ni+1)
†(v̂ni+1 − v̂ni ) dy∫

f

|v̂ni+1|2 dy

, (2.34)

where n indicates the iteration step number, v̂ is the vector of velocity shape func-
tions, and † denotes complex conjugate. At each iteration step, equation (2.33) is
simultaneously solved for all stability modes, and iteration continues until the norm
is globally satisfied to within 10−6. As this procedure is carried downstream in a
stepwise fashion, the nonlinear interactions will continue to grow until the iteration
eventually fails to converge.

Typically, the convergence will stall and, in subsequent iterations, the shape func-
tions will develop jagged profiles that are clearly non-physical. This development is
particularly prone to occur in conditions of significant heat release where the mean
temperature profile, by virtue of the infinitely fast-chemistry assumption, has a sharp
discontinuity in its derivative. Indeed, this effect was the motivation behind including
cross-stream viscous and heat conduction terms that naturally help to suppress this
evolution. However, these terms will eventually be overwhelmed, resulting in diverging
iterations which lead to overflow. In closing, it is noted that this failure is not too
restrictive because it generally occurs just prior to the flow becoming highly nonlinear,
at which point the PSE assumptions and hence their solutions are clearly invalid.

3. Central mode simulations
3.1. Validation

With the creation of any nonlinear model such as this implementation of the PSE
technique, there is an obvious need for validation. Here we compare PSE and direct
numerical simulation (DNS) results for a spatially developing mixing layer. Details of
the DNS implementation are provided in Day (1999). Test conditions were selected
to achieve a moderate compressibility while maintaining a two-dimensional, central-
mode instability: Mc = 0.5, Θ = 0, r = 0.6 and s = 1. A spatial DNS was calculated
at Reo = 5000 for these flow conditions in a computational box that spanned
(160× 30) δωo . The complementary PSE solution was computed with eight frequency
modes. Initial conditions for both simulations involved linear stability solutions of



Nonlinear stability and structure of compressible reacting mixing layers 387

DNS

Nonlinear PSE

Linear PSE

100

10–4

10–8

10–12

0 50 100 150
x

E2«

E1«

E
m« 

=
 !

∞ –
∞

 (|
u

m«|
2 

+
 |v

m«|
2
) 

dy
ˆ

ˆ

Figure 4. Comparison of DNS to linear and nonlinear PSE integrated energy results for the
fundamental and first harmonic modes (Mc = 0.5, r = 0.6, s = 1, Θ = 0, M = 8).

the fundamental and first modes harmonic forced at initial magnitudes of 0.001 and
0.0002, respectively. Forcing of the subharmonic mode to promote pairing will be
discussed in the following section; initially, there was some question as to the ability
of the parabolized equations to correctly model pairing so subharmonic forcing was
avoided while validating the basic technique.

The first validation task is to look at the growth of individual modes from the
initial condition through the linear and nonlinear stages. This is best done through
an integrated measure like the modal energy,

E ′m ≡
∫ ∞
−∞

(|û′m|2 + |v̂′m|2 + |ŵ′m|2) dy, (3.1)

where, for example, û′m is the time Fourier transform coefficient of the u velocity
component at the frequency ωm = mω1. This is related to the PSE shape function
through û′m = ûm · Am(x). Integrated energy results are shown in figure 4 for the
first two modes of the DNS and PSE simulations, where the latter are shown for
both linear and nonlinear calculations. For the fundamental mode (m = 1), excellent
agreement between all solutions in the linear domain is followed by the departure of
linear and nonlinear solutions at the start of saturation (x ≈ 75). The linear solution,
which lacks any such limit mechanism, continues its exponential growth. Figure 4
shows that the post-saturation result for the nonlinear PSE is indistinguishable from
the DNS solution. Equally impressive agreement is found in the first harmonic (m = 2)
mode. Starting at x ≈ 25, the nonlinear PSE solution for this mode correctly models
both the growth due to addition of energy from the fundamental mode and the
eventual saturation. The difference between linear and nonlinear PSE solutions is
particularly striking because this mode becomes stable without nonlinear interaction.

The energy growth of higher harmonics (m = 3, 4) of the PSE is shown in figure 5.
The interest in these modes concerns their growth from the initial condition which
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Figure 5. Comparison of DNS and PSE integrated energy results for two of the higher harmonics
(Mc = 0.5, r = 0.6, s = 1, Θ = 0, M = 8). Note that E ′4 results are shifted for readability.

was generated through equation (2.27) rather than with linear stability modes. The
results demonstrate some disagreement early in the simulation when the energy level
in these modes is low, but the comparison becomes excellent when the modes begin
to play a role in the simulation by receiving energy via the cascade from lower, more
dominant frequencies. The energy level in these modes also saturates later in the
simulation, with the PSE solution predicting a slightly lower energy level than the
DNS in the post-saturation phase.

Turning our attention now to the real-space flow field and related statistics, figure 6
compares DNS and PSE results for the streamwise evolution of the maximum velocity
fluctuations in the u- and v-components. The agreement is again excellent. For ũmax

the agreement between peak values is within 0.6% and the difference between the
solutions is only discernible at the very late stages of the calculation. The results
for ṽmax are still impressive – the estimates of the peak differ by only 2.2% – although
the level of the peak fluctuation intensity, at 14% of the mean value, suggests the
presence of strong nonlinear effects where the PSE assumptions are not expected to
hold.

A full-field appreciation for the PSE solution can be seen in the spanwise vorticity
contour plots of figure 7. This streamwise evolution documents the nonlinear develop-
ment of the central-mode flow structure. Agreement between nonlinear PSE and DNS
calculations in figures 7(a) and 7(b) for the large-scale structure is excellent. A plot of
the linear PSE contours in figure 7(c) offers an additional perspective on the impor-
tance of nonlinear modelling past x = 65, and clearly demonstrates why a nonlinear
analysis is required to study the large-scale flow structure responsible for initiating
mixing. The principal disagreement between the DNS and nonlinear PSE simulations
concerns the small-scale structure which is a direct result of resolution problems when
only eight frequency modes are tracked. An explicit demonstration of this is shown in
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Figure 6. Comparison of PSE and DNS results for the maximum u and v fluctuation at a given
streamwise position (Mc = 0.5, r = 0.6, s = 1, Θ = 0, M = 8). Note that the kinks – present in both
DNS and PSE calculations – are caused by the change in location of the maximum fluctuation.

figure 8(a), which plots a test function along with its representation using only eight
Fourier modes. The truncated series simply lacks the spatial resolution to map the
rapidly changing features of the test function. Oscillations result when the energy of
the highest-resolved mode is not cancelled out by absent higher-order modes. Exactly
the same phenomenon is seen in figure 8(b), where we plot the spanwise vorticity
along the centreline from DNS and PSE calculations. Resolution problems result
when a mode-truncated PSE simulation attempts to reproduce sharp gradients in
the braid region. Truncation of the mode expansion in the PSE is responsible for
the fine-scale fluctuations detected in the contours of figure 7(b). Accordingly, the
reader is cautioned against attributing the fine-scale structure in contour plots to
well-resolved, physical phenomenon.

With the fidelity of the PSE verified, the run time comparison becomes the critical
result: the PSE calculation took fifteen minutes on a conventional workstation,
roughly 350 times faster than the DNS calculation. Based on experience, it seems
reasonable to characterize the increase in speed as ≈ 103 and ≈ 104 for two- and
three-dimensional simulations, respectively. These numbers will reduce slightly when
temporal rather than spatial DNS are used in the comparison. However, we note that
temporal simulations, while statistically very useful, do not allow certain aspects like
acoustics or asymmetry in the velocity profile to be studied.

3.2. Simulation of vortex pairing

The pairing of vortices is the dominant growth mechanism for the central mode
(Winant & Browand 1974) and it is therefore essential that simulation techniques,
regardless of their approximation, are able to capture this physics. This presents a
significant challenge: by construction, parabolic methods exclude upstream propa-
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conditions of figure 7.

gation of information, and this seems at odds with one explanation for vortex pairing
based on interaction between vortices – their coupling and induced co-rotation – that
implies an elliptic effect. However, modelling efforts by Monkewitz (1988) suggest
that pairing is more simply related to the growth of instability waves. From this
kinematic viewpoint, pairing is the result of the subharmonic mode ‘overtaking’ the
fundamental instability without a significant interaction between the two. Further, the
demonstrated importance of the phase difference in determining the choice between
and efficiency of pairing and shredding (Monkewitz 1988; Hajj, Miksad & Powers
1993) suggests more support for a kinematic explanation than a Biot-Savart-type
interaction. As Monkewitz points out, establishing a relation between instability
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growth rates and a fundamental mechanism for shear-layer growth also provides
insight on how linear stability theory (LST) can provide such an accurate prediction
of experimentally observed flow phenomenon.

The PSE method offers an interesting tool to investigate this further by comparison
to the DNS of Colonius, Lele & Moin (1997) at Re = 5000, Mc = 0.125, s = 1 and
r = 0.5. Their spatial simulation, which was conducted to evaluate the accuracy of
acoustic analogies, used an input velocity profile from the thin-shear-layer equations
coupled with the most amplified (fundamental) linear instability disturbance and its
first three subharmonics at the initial conditions, all with a normalized inlet magnitude
of 0.001. A PSE simulation was constructed in a nearly identical manner, using a total
of sixteen frequency modes to model the fundamental and first two subharmonics.
In this configuration, the fundamental mode corresponds to m = 4 and the first and
second subharmonics to m = 2 and m = 1, respectively.

A quantitative comparison of the two simulations is shown in figure 9, where
integrated energy in û for the three input modes is plotted. The PSE results for
the subharmonic modes (m = 1 and 2) are nearly indistinguishable from the DNS
solution at the streamwise positions where the mode is dominant. The agreement in
the fundamental mode (m = 4) is also impressive but is not without some discrepancy
in the later stages, which is most likely due to the mode truncation discussed earlier.
A direct, visual comparison between results from DNS and PSE calculations can
be made in the spanwise vorticity contour plots of figures 10(a) and 10(b). The
qualitative agreement is excellent considering the mode-truncated nature of the PSE
calculation. The large-scale features are nearly identical, with the location of the
two vortex pairing events occurring at the same streamwise position. The close
agreement demonstrates that the PSE have not eliminated the important physics,
despite the approximation made in equation (2.26). This observation motivated a
further simulation to investigate the degree of interaction between the modes by
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removing the forcing of the fundamental. Spanwise vorticity contours for this case
appear in figure 10(c). Comparison with figure 10(b) reveals that the only missing
features are the vortices of the fundamental modes that first appear around x = 60;
all other large-scale features – even early in the flow development – are nearly identical.
The energy development for this case, not shown here (see Day 1999), also reveals
little difference between the two remaining modes. The only observable change is a
slightly earlier saturation in the first subharmonic (m = 2).

The close agreement between these plots suggests, in support of Monkewitz (1988),
that the growth of stability modes is the controlling mechanism and that mutual
pairing interactions play only a secondary role. However, the relative importance
of mutual induction (Biot-Savart) between vortices cannot be established without a
detailed analysis that lies beyond the scope of this investigation. But, regardless of the
exact mechanism, these observations unequivocally show that the overall development
of the layer through vortex pairing is closely connected to instability-mode growth
rates. Indeed, as Monkewitz points out, this observation may provide a physical
explanation for the accuracy of linear stability calculations. Winant & Browand
(1974) demonstrated that the rate of pairing interactions determines the spreading
rate of mixing layers, and hence LST, which accurately models the appropriate
physics of the pairing process (the growth rate of instability waves), should also
closely predict experimentally observed spreading rates. Some agreement with this
hypothesis can be found in the suggestion of Hermanson & Dimotakis (1989) that
the mechanism for vortex amalgamation (e.g. pairing) is inhibited by heat release.
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Figure 11. Effect of compressibility on the onset of pairing as visualized in the development of the
vorticity thickness profile for two-dimensional PSE simulations (r = 0.5, s = 1, Θ = 0, Re = 5000,
M = 8).

This same effect is noted in LST growth-rate predictions (Shin & Ferziger 1993; Day
et al. 1998).

Further support for this idea can be found by using the PSE to compare the effect
of compressibility on LST growth rates and pairing distance. Six simulations, equally
spaced between Mc = 0 and Mc = 0.625, were conducted with the two-dimensional
PSE using eight frequency modes for otherwise identical input conditions (r = 0.5,
s = 1, Re = 5000). The vorticity thickness evolution for these simulations is shown in
figure 11. The delay in pairing, as measured by the increasing streamwise location of
maximum vorticity thickness, is clearly seen with increasing compressibility. A direct
comparison of this delay to the growth rate suppression of the most-amplified (i.e.
fundamental) mode from linear stability calculations is shown in figure 12. The linear
stability growth rate and pairing distance, the latter for both PSE and DNS results
(for details, see Day 1999), have both been normalized by their values at Mc = 0.
Plotted in this manner, the direct relationship between the two effects speculated
by Sandham (1994) becomes clear. Here, the attenuation of instability waves with
compressibility, which impacts both linear and nonlinear processes equally (Vreman
et al. 1996), can be seen to directly account for the delay in vortex pairing.

4. Flow-structure mixing investigations
With the mixing layer validation now complete, our attention returns to the subject

of reacting flows and, in particular, to mixing. This section begins with an investigation
of central-mode mixing which provides a reference point for the outer-mode results
to follow. We mention from the outset that the PSE can only be used as a first-order
model of mixing. PSE assumptions inherently limit our resolution to only the first
step in the combustion process: the entrainment of fluid that is governed by large-
scale structure. The two subsequent steps of molecular mixing and chemical reaction
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suppression of the LST growth rate, both normalized on the incompressible result (r = 0.5, s = 1,
Θ = 0, Re = 5000, M = 8).

are either ignored, in the case of molecular mixing, or simplified, in the case of the
fast-chemistry assumption for chemical reaction. It should be noted that finite-rate
chemistry is inconsistent with the time-periodic nature of the PSE formulation; an
equilibrium approach is conceivable but was not pursued in the current work.

Limitations notwithstanding, there is value in making general comments on the
change in mixture-fraction probability density function (PDF) between different flow
conditions, particularly for regimes that have not been previously addressed by either
experiment or computation. PDFs provide a compact description of the time- and
spanwise-averaged mixture fraction, defined as

ξ =
Yf − Yo/n+ Yo,∞/n
Yf,−∞ + Yo,∞/n

. (4.1)

PDFs indicate the probability of finding fluid of mixture fraction ξ ± ∆ξ/2 at a
given streamwise and cross-stream position in the flow; as such it is subject to the
normalization ∫ 1

0

P (ξ, x, y) dξ = 1. (4.2)

4.1. Central-mode mixing

A considerable body of literature has been dedicated to investigating mixture fraction
PDF shapes in incompressible non-reacting flows (see Karasso & Mungal 1996, for
a summary of results and discussion). In practice, experimental measurements of
mixture fraction PDFs in this regime have shown considerable variation in shape.
The main disagreement concerns whether the PDF shape should follow ‘marching’
or ‘non-marching’ behaviour. Marching implies that the most probable value of
the mixture fraction, ξ, is nearly identical to the mean value at each cross-stream
location. A non-marching PDF has a shape that is largely invariant to position.
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Here, the presence of a preferred mixture-fraction value implies the dominance of
large-scale structures. A ‘tilted’ profile describes an intermediate shape.

In compressible flows, experimental investigations by Dutton et al. (1990), Messer-
smith & Dutton (1992), Clemens & Mungal (1995) and Clemens & Paul (1995) are
all in agreement that the mixture-fraction PDF displays a marching profile. However,
Island (1997) notes that these results should be viewed cautiously because of resol-
ution problems at the high Reynolds numbers of these experiments. In a well-resolved
DNS of an annular shear layer, Freund (1997; see also Freund, Moin & Lele 1997)
obtained a tilted PDF distribution at compressibility levels beyond the experimental
conditions. However, instability modes were forced in this calculation, and the re-
sulting large-scale structures bias the PDF toward a non-marching profile (Rogers &
Moser 1994). Naturally, we expect to have the same bias in our PSE results because
the method resolves only the large-scale flow structure.

Flow conditions for the four cases that will be discussed in this section are shown
in the regime chart of figure 13, which plots the change in flow structure – both
between dominate modes (solid lines) and two and three dimensions for a particular
mode (dotted lines) – through a slice of the mixing layer’s parameter space. Full
details on the construction of this regime chart are provided in Day et al. (1998).
This study, in agreement with the results of Jackson & Grosch (1990), identifies heat
release, compressibility and density ratio as the parameters of greatest import to the
development of flow structure; velocity and equivalence ratio are secondary influences.
As figure 13 demonstrates, the PSE mixing case conditions of the current investigation
are selected by fixing compressibility and varying heat release and density ratio to
generate the three different dominant flow structures and a fast/slow mode colayer
case. Varying the compressibility is not essential to this study due to the similar effect
of heat release and compressibility on flow structure (Jackson & Grosch 1990; Day
et al. 1998).
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Figure 14. Mixture fraction field of the central mode in the (a) z = 0 and (b) y = 0 planes (Mc = 1,
Θ = 0.75, φ = 1, s = 1, r = 0.5, M = 5, N = 4). Mixture fraction contours with ∆ξ = 0.08,
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all contours ξ < 0.5 are dotted in (b).

We begin discussion with the three-dimensional central-mode case of Mc = 1,
Θ = 0.75 and s = 1 that is simulated with M = 5 and N = 4. For all three-
dimensional simulations of this section, input conditions consisted of forcing the (1,0)
(fundamental) and (1,1) modes without phase shift at amplitudes of 0.001 and 0.0004,
respectively. Further, all simulations are done at a Reynolds number of 10 000 and
with r = 0.5 and φ = 1.0. Figure 13 shows that this flow regime is very close to
the transition boundary between central- and outer-mode flow regimes. A sense of
the type of large-scale structure that results is given by figure 14. Plots of mixture
fraction contours of the scalar field are shown in the cross-stream plane, z = 0 in
figure 14(a) and in the spanwise plane, y = 0, in figure 14(b). The contours in the
cross-stream plane of figure 14(a) do not show the roll-up of vorticity observed in
non-reacting flows. This is a result of the significant heat release and compressibility
which cause a shift away from the centrally dominant shape of the density-weighted
mean vorticity profile, ρ du/dy (see figure 1). The spanwise-plane view of figure 14(b)
clearly shows strong three-dimensional features in this flow regime. We note that
this calculation ends when the large energy content in multiple three-dimensional
modes (i.e. the transition to turbulence) prohibits convergence of the PSE iteration at
x = 345. Simulations of the three-dimensional central mode were the only calculations
that were unable to run to saturation for this reason.

Probability density functions for the mixture-fraction field of this central-mode
flow are shown in figure 15. Seven PDFs are shown at positions of equal spacing,
∆y = 1/8 δvis, between y/δvis = −3/8 and +3/8. The probability distributions were
constructed by sampling 400 times across the period of the fundamental mode and,
at each time, 400 samples were taken across the largest spanwise wavelength. The
results were distributed into 50 bins to yield ∆ξ = 0.02. The bin corresponding to
ξ̄ at each position is shaded in on the figure to provide a reference point. We note
that the lack of molecular-mixing effects causes step-function-like gradients at the
bins corresponding to pure fluid. In a well-resolved computation these and other
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Figure 15. Mixture fraction PDFs at x = 310 and z = 0 for the central-mode flow of figure 14.
Seven symmetric y-positions are represented with ∆y = 0.125δvis. The probability axis has been
truncated for visualization purposes and the bin corresponding to ξ̄ has been shaded in.

discontinuities in the PDF profiles would be smoothed out. However, the general
shape of the profiles would remain unaltered and we will therefore restrict ourselves
to comments of that nature. On this level, the principal measures of note in figure 15
are tilted PDFs. This feature is consistent with the observations of Freund (1997)
in well-resolved direct numerical simulations of a compressible jet. Based on the
results of Rogers & Moser (1994), we do not expect to obtain the marching PDFs
viewed in compressible experiments because of our highly forced input condition (see
Day 1999, for details). Further, the broad range of probability representation and
the significant concentrations of pure fluid that exist (pure oxidizer at ξ = 0 and
pure fuel at ξ = 1) at each cross-stream location is noted in figure 15. These latter
observations are characteristic of the central-mode mixing mechanism schematically
shown in figure 2(a): large-scale structures spanning the entire layer entrain fluid
from both sides in a single-step process.

4.2. Single outer-mode mixing

The observations of the previous subsection are primarily of use as a basis of
comparison to the outer-mode PDFs, which will now be discussed. The regime chart
of figure 13 demonstrates that a 50% density bias in either free stream can result
in an outer-mode-dominant flow structure at Mc = 1.0 and Θ = 0.75, and these
cases are discussed below. First, the mixture-fraction contours for the fast-mode case
(Mc = 1.0, Θ = 0.75, φ = 1 and s = 2/3) are shown for both spanwise and streamwise
cross-sections in figure 16. Contours in the spanwise plane demonstrate the largely
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Figure 16. Mixture fraction field for a fast mode in compressible reacting conditions across
(a) streamwise (z = 0) and (b) spanwise (y = 0.5) planes (Mc = 1, Θ = 0.75, φ = 1, s = 2/3, r = 0.5,
M = 5, N = 4). Mixture fraction contours with ∆ξ = 0.08, ξmax = 0.98, and ξmin = 0.02 and the
flame sheet at ξ = 0.5 marked as a dotted line.

two-dimensional nature of the flow structure (Day et al. 1998). The streamwise view
details the bias of the vortical structure towards one side of the layer, which severely
limits mixing in the reacting zone and provides little convolution of the flame sheet
(shown as the dotted contour).

This one-sided isolation is clearly seen in the PDF profiles plotted in figure 17 at
x = 230, a streamwise position just past the saturation of the fast-mode fundamental
instability. The lack of mixing on the slow side of the layer is evident in the near
delta-function behaviour of the PDF for y < 0 positions. Even the centreline position
displays only a modest range of mixture fraction values in comparison to what was
seen with the central-mode case of figure 15. The majority of the mixing influence is,
understandably, concentrated on the fast side, although even these PDFs demonstrate
a fairly limited range of populated mixture fraction values. Each of these three fast-side
PDF locations also feature a dominant probability of pure fluid. These distributions
suggest a combustion process that is well supplied with oxidizer from mixing action
on the fast side but is limited by the delivery of fuel through diffusion from the slow
stream.

A similar set of plane views and PDF plots for flow structures that develop in the
slow stream are shown in figures 18 and 19. Here, the larger growth rate of the slow
mode results in fundamental-mode saturation at x = 125. Similar to the fast-mode
case, the flow structure is largely two-dimensional, and exists entirely on one side of
the flame sheet. A comparison of slow-mode PDFs to the fast-mode case indicates
an even greater polarization to one side. The delta-function behaviour extends all the
way to the centre of the layer, implying that no appreciable mixing action extends
down to the flame sheet position. Instead, the mixing influence from the slow mode
is only present at the three positions on the slow side of the layer. Each of these
positions demonstrates a similar probability distribution, having a strong bias towards
pure fuel concentrations and a range of populated bins that only extends to ξ ≈ 0.5.
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Figure 17. Mixture fraction PDF at x = 230 for the fast-mode flow of figure 16. Seven symmetric
y-positions are represented with ∆y = 0.125δvis. The probability axis has been truncated for
visualization purposes and the bin corresponding to ξ̄ has been shaded in.

4.3. Colayer simulations and mixing

Results presented for single outer-mode flows motivate an investigation of colayers,
a special case where two modes are equally amplified and an opportunity for mixing
enhancement exists. A fast/slow colayer case was simulated for the conditions Mc = 1,
Θ = 1, s = 0.94, a point that lies directly on the regime boundary of figure 13.
This chart also shows the two-dimensional dominance of the outer modes at these
conditions and, correspondingly, a two-dimensional PSE simulation was first run. To
investigate the long-term development of this flow structure, subharmonics of the
fundamental modes were also forced at the inlet. More specifically, the fundamental
fast and slow modes were forced at a magnitude of 0.001 and with frequencies
m = 6 and m = 4. These frequencies were chosen to correspond to the most unstable
frequencies determined by linear stability. The subharmonics were forced at m = 2
(slow) and m = 3 (fast) with half the magnitude of the fundamental and a phase
shift of φs = π/2 to optimize their interaction with the fundamental modes (Planché
1992). The second subharmonic of the slow mode was also introduced with negligible
forcing at m = 1.

Energy development of the principal modes is shown in figure 20 with circles
marking the points where energy in a subharmonic overtakes the fundamental mode.
The colayer nature of the flow is evident in the similar (exponential) growth rates of
the two fundamental modes; the slight difference results from forcing these instabilities
at discrete frequencies prescribed by the PSE. Interestingly, the slow mode reaches
saturation first at 50% of the fast-mode energy level. Both fundamentals decay
in energy with further streamwise development and are eventually overtaken by
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Figure 19. Mixture fraction PDF at x = 140 for the slow-mode flow of figure 18. Seven symmetric
y-positions are represented with ∆y = 0.125δvis. The probability axis has been truncated for
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Figure 20. Energy evolution in a fast/slow mode colayer case with subharmonics of both the fast
and slow modes initialized with φs = π/2 (Mc = 1, Θ = 1, φ = 1, s = 0.94, r = 0.5, M = 24, N = 0).
The ◦ symbols denote a change in dominance from a higher to lower harmonic.

their subharmonics at x = 330 for the slow mode and x = 395 for the fast. The
second subharmonic of the slow mode grows rapidly throughout the simulation and
eventually overtakes the first subharmonic at x = 420.

Three views of the corresponding development in the mixture-fraction field are
shown in figure 21. The earliest view in figure 21(a) corresponds to the first saturation
point and the dominance of energy in the two fundamental modes results in clearly
observable flow structure on both sides of the layer. This mixing field appears to
be a superposition of two single-mode simulations: the vortical mixing is completely
isolated to either side and the convolution of the flame sheet (the dotted line) is
negligible, implying little mixing in the reaction zone. Indeed, this is the nature of the
independent, two-step mixing process that was described in § 1 (see figure 2).

With longer streamwise development, the flow structure becomes convoluted by
the competing influence of the fundamental and subharmonic modes, which are
now at equal energy levels. Compared to the slow modes, the fast fundamental and
subharmonic contain more energy and their combined presence has increased the
thickness of the layer and, in the final view of figure 21, has pushed the flame
sheet towards the slow side. However, this increase in thickness occurred without
vortex pairing, in contrast to what is observed when a central mode is dominant
(see § 3). DNS studies by Planché & Reynolds (1992) (and Planché 1992, in greater
detail) observed the same phenomenon and termed it ‘gulping’. Analysis of vorticity
generation terms in these DNS studies revealed the presence of a large baroclinic
torque that acts to prevent outer-mode structures from pairing. They also identified
the elongated shape and absence of roll-up in the outer-mode vortices as factors in
producing the gulping behaviour.

The mixing characteristics of this flow were investigated with a three-dimensional
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Figure 21. Evolution of the mixture fraction field for the fast/slow colayer of figure 20. Three
visualizations are shown at x-locations where (a) the fundamental modes dominate (x = 200) and
where a mode transition is taking place at (b) x = 300 and (c) x = 400. Mixture fraction contours
with ∆ξ = 0.08, ξmax = 0.98, and ξmin = 0.02 and the flame sheet at ξ = 0.5 marked as a dotted line.

PSE simulation of the same case, but without resolving the subharmonics. Three-
dimensional simulations are required for PDF construction because they provide a
second statistical dimension to the flow, which results in a far better realization of
the PDF than sampling over the time period alone. Plots of the mixture fraction
contours through the z = 0 plane are shown at three different times in figure 22
to detail the structure evolution. The plots are separated by ∆t = π where, for the
special case of this simulation, the periods of the fast and slow modes are 2π and
4π. Dotted lines are drawn between plots to indicate the displacement in time of a
specific fast- and slow-mode structure. The difference in slope between these lines is
proportional to the phase-speed difference of the modes: 0.64 and 0.88 for the slow
and fast fundamentals, respectively. The difference would be more significant if the
velocity ratio were reduced, but r = 0.5 was set constant in all simulations.

The mixture fraction PDF of this flow structure at x = 230 is shown in figure 23
using the same plotting convention as the previous section. Similar to the mixture
fraction field, the colayer PDF has the appearance of being constructed from half of
each single-mode PDF sequence of figures 17 and 19. Again, this implies very little
communication between the different sides. However, the presence of mixing on both
sides of the layer, even without direct interaction, represents significant enhancement
relative to the single-mode PDFs of the previous section. It is also noted that figure 23
is very similar to the PDFs from Planché’s (1992) three-dimensional DNS simulations.
Our PSE-based PDF at the centreline even replicates the probability bias towards the
slow stream that was observed in Planché’s DNS results. This was attributed to the
better performance of the slow mode in entraining pure fluid to the reacting zone.

With the mixing enhancement of colayers now established, there is a need to
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determine how common these conditions are in a real flow. Specifically, the question
concerns the effective ‘thickness’ of the colayer lines that were plotted in the regime
chart of figure 13: how close to those boundaries do the flow conditions need to be
to observe colayers? Linear stability results suggest that the boundaries are very thin;
a slight difference in exponential growth rates will eventually lead to the dominance
of one mode over another. In reality, however, there is a saturation mechanism in
place that limits this exponential growth. If saturation occurs before the difference
in growth rates can effectively separate the modes, then colayer conditions will be
observed in the resulting flow structure.

Several PSE simulations of a fast/slow colayer were conducted to determine the
sensitivity of this dual-mode flow to changing conditions. Starting at a fast/slow
colayer point, the density ratio was increased to move in a direction normal to the
colayer boundary. The progression of these points on the (s,Θ) regime chart is shown
in figure 24(a). The corresponding linear stability growth rates of the fast and slow
modes appear in figure 24(b), which provides a further view of the strong effect the
density ratio has on the relative amplification of the outer modes (Jackson & Grosch
1990; Day et al. 1998). A qualitative view of what this does to the flow structure
is seen in the mixture-fraction contours of figure 25. The 30% change in density
ratio between the first and last case is enough to apparently erase the fast-mode flow
structure. The fast mode will eventually appear with further streamwise development,
although probably only after the point that the slow mode has interacted with its
subharmonics and grown appreciably in both size and energy. Our conclusion is that
the range of fast/slow colayer conditions – and hence the mixing enhancement they
provide – will be relatively limited in the mixing-layer parameter space.
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5. Conclusions
The parabolized stability equations have been applied to the study of both reacting

flows and mixing layers for the first time. A comprehensive and very favourable
comparison of the technique to DNS results was provided for sub- and supersonic
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conditions, thereby validating the technique – and this implementation in particular –
for the study of free-shear-layer flows. The ability of the PSE to accurately model
vortex pairing was also demonstrated by comparison between PSE and DNS results.
This capability was exploited to extend the conclusion of Monkewitz (1988) into the
fully nonlinear, non-parallel domain: vortex pairing appears to be determined simply
by the independent growth of instability waves. While our demonstrations cannot
definitively exclude the mutual induction mechanism (Biot-Savart), they do suggest
that induction is of secondary importance to the growth of stability modes in control-
ling vortex pairing. This observation received further support in the demonstration
that the delay in pairing caused by compressibility was very closely correlated with the
attenuation of instability growth rates. Thus, the accurate prediction of pairing – the
mechanism responsible for nonlinear mixing layer growth – from linear growth rates
offers insight into why linear stability theory is such an effective analysis technique
for mixing layers.

This investigation has demonstrated the ability of the PSE to be useful in qualitative
mixing studies using an infinitely fast-chemistry assumption. Central-mode mixture-
fraction PDF distributions demonstrated the efficient nature of this mode’s mixing
mechanism through their large range of probability representation and the existence
of both pure reactants in a significant span of cross-stream positions. This is in stark
contrast to the mixture-fraction PDFs generated by outer-mode flow structure. Their
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shape was relatively compact on the side associated with the mode, while the PDF
approached the delta-function behaviour of laminar flow on the opposite side. This is
a clear indication that the impact of the outer modes on mixing is entirely localized
to one side, and is separated from the other by the flame sheet.

The nonlinear development of the fast/slow colayer was also studied. Subharmonics
of the outer modes were found to overtake the fundamental without pairing. This
process occurred without any interaction between the different sides of the layer.
Mixture fraction PDFs indicated a similar lack of communication across the flame
sheet. They appeared to have been formed by the superposition of two PDFs from
flows where the outer modes appeared individually. While this colayer flow presents
a significant enhancement of mixing relative to a single-outer-mode configuration,
it does not approach the degree of mixing provided by the central mode. Further,
nonlinear stability studies indicated that the width of fast/slow colayer conditions
on the regime charts was, in practice, quite limited: a 25% change in density ratio
relative to a colayer case resulted in complete dominance of flow structure on the
density-biased side.
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